Innovative Blending of Large Volume Dredged Materials to Reduce Pollutant Risk and Enable Sustainable Reuse

Songjing Yan^{a,b}, Houis Cheung^b and Upal Ghosh^b Currently at E^xponent^a ^b University of Maryland Baltimore County

Background

Dredged materials:

- > Sustainable
- > Have a range of pollutants
- Innovative and beneficial use?

Industrial byproducts: biochars and biosolids

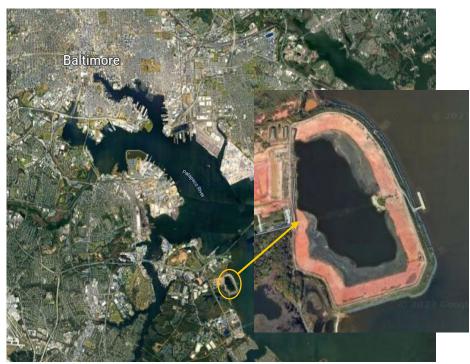
- > Unique sorption characteristics
- Low-cost amendments

Fechnical Approach

Select, procure, and characterize study sediments (dredged materials).

Select, procure, and characterize potential amendments.

Conduct aqueous isotherm measurements for selected organic contaminants


Determine optimal amendment and dose for treatment of dredged sediments.

Perform aqueous availability, bioaccumulation measurements to assess the effectiveness of risk reduction.

Evaluate engineered placement with strategic layering of treated sediments.

Methods WMBC

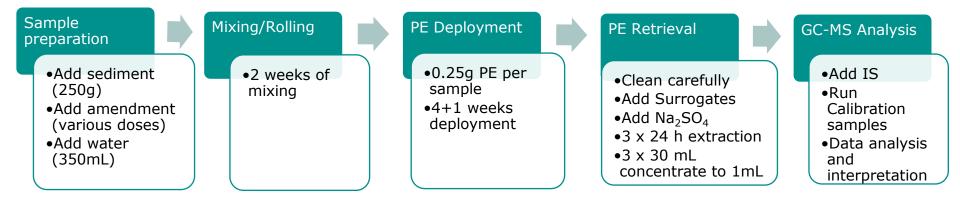
Select and characterize study sediments

Dredged materials collection sites phots source: Google Map

Homogenization of sediment using a mixing paddle attached to an electric drill

- Cox Creek dredged material containment facility (DCMF)
 - Grain size distribution
 - Moisture content
 - Total organic carbon
- Black carbon
- Heavy metals
- Organochlorine pesticides
- 16 PAHs
- PCBs

Select, procure, and characterize potential amendments


Туре	Quantity available	Contaminants present	Sorption characteristics	рН	Carbon sequestration potential			
COMMERCIAL SORBENTS								
Activated carbon	Large	No	High for organics, moderate for metals	High to neutral	Yes, for coconut AC			
Apatite	Large	No	High for metals, no sorption of organics	Neutral	No			
LARGE VOLUME INDUSTRIAL BYPRODUCTS								
Poultry litter biochar	Large	N, P, metals, organics	Strong for metals and some organics	high	Yes			
Mushroom compost biochar	Large	N, P	Strong for organics	high	Yes			
Wood biochar	Large	No	Strong for organics and Hg and MeHg	high	No			
Flyash	Large	Metals	Moderate for metals	high	No			
Biosolids	Large	N, P, metals, organics	Moderate for metals and organics	neutral	No			

🚯 UM

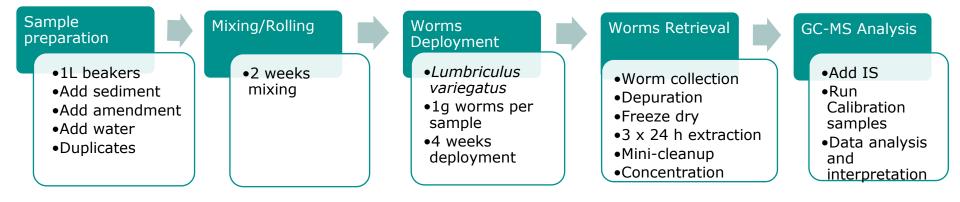
ABC

List of tailored sorbent materials and locally available high-volume industrial byproducts that could potentially be used for sediment amendments

Determine optimal amendment and dose for treatment of dredged sediments

Dredged sediment with added amendment materials

Dredged sediment samples on the roller for equilibrium study


Polyethylene sheet retrieval after 28 days

UMBC

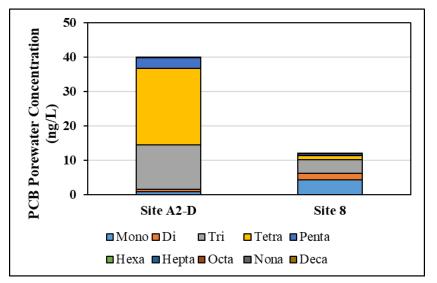
Agilent GC-MS for quantification

Bioaccumulation measurement

Laboratory bioaccumulation experiment set up

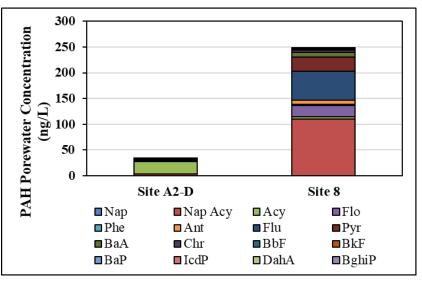
Freshwater L. variegatus in samples

Collected and freeze-dried worms

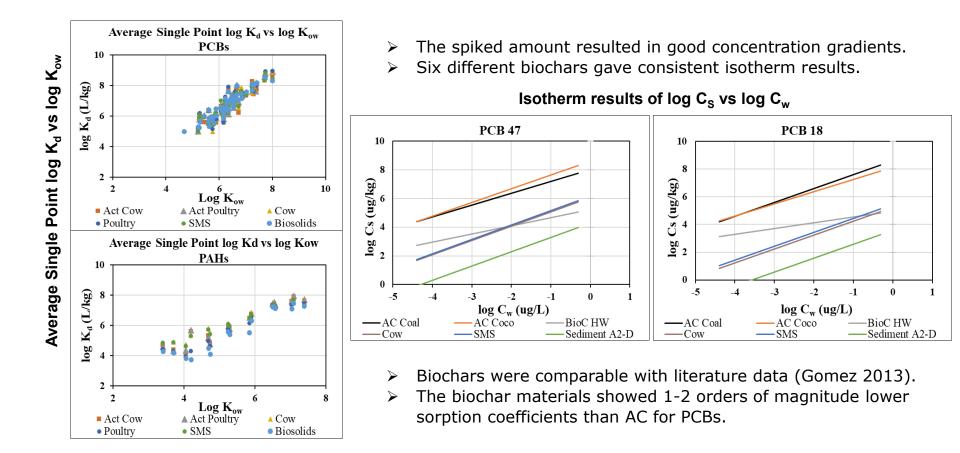

UMBC

Results

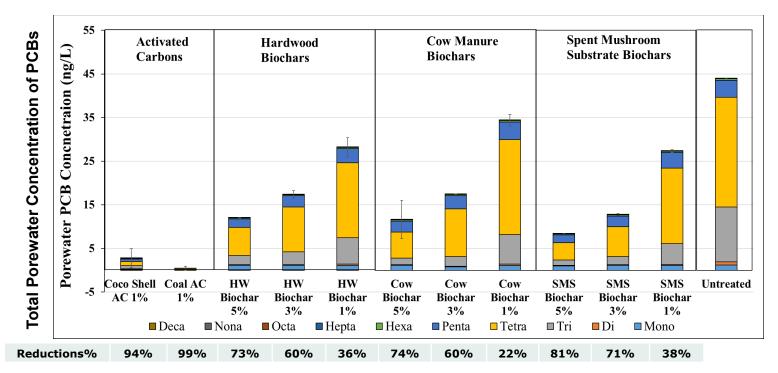
Selection and characterization of sediments.


Based on the characterization, site A2-D and site 8 were selected that provide a range of concentrations for ultimate use in this research.

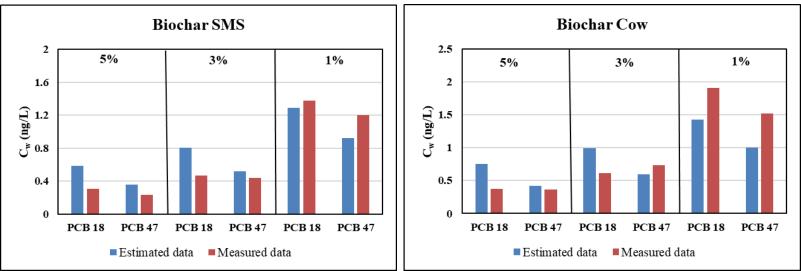
Initial porewater concentrations of PCBs



Sediment		Dry Bulk Density	Moisture Content	ΣPCB Sediment	Σ ₁₆ PAH Sediment
sample	TOC %	(g/mL)	(%)	Conc. (ng/g)	Conc. (mg/kg)
Site 8	2.57	0.41	67.9	89.0	16.72
A2-D	1.01	0.75	46.7	844.1	0.94

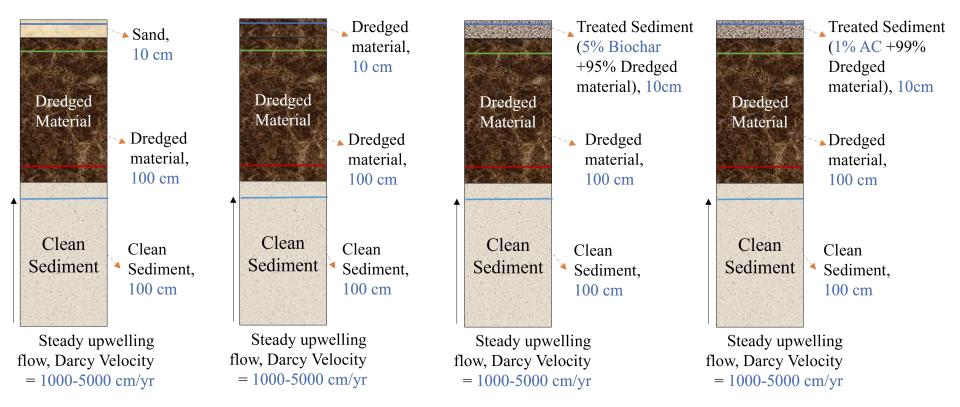

Initial porewater concentrations of PAHs

Select and characterize potential amendments

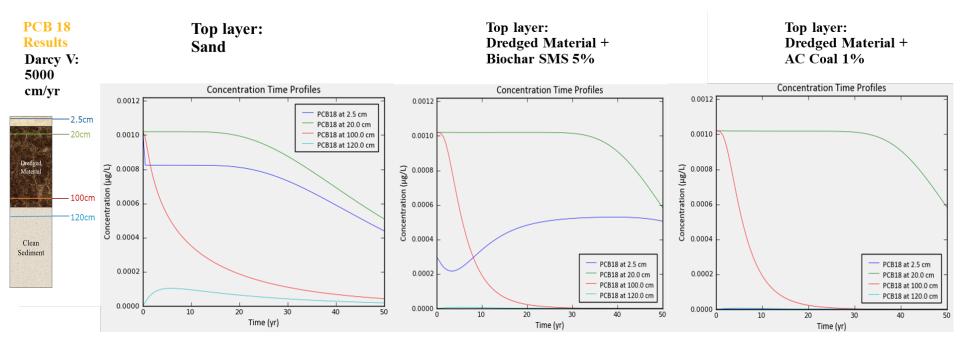


Determine optimal amendment and dose

- > AC materials reduced PW concentrations more than biochars.
- > Higher doses of biochar resulted in higher reductions.
- > The high (99%) reduction with 1% Coal AC is likely due to low f_{oc} (1%) in sediment.


Comparison of calculated and measured concentrations

Porewater Concentrations in SMS and Cow Biochar Amendment Samples


- \succ C_w estimations based on K_d values.
- > Using mass balance (assuming achieved equilibrium after 2 weeks).
- \succ Estimated C_w data agreed with the experimental results.

Evaluation of engineered placement with strategic layering of treated sediments

🚱 UMBC

Evaluate strategic placement of engineered layers

P

- > All scenarios show the effectiveness of layered amendment placement for bio-active layer (top 2.5cm).
- > Early breakthroughs in top sand layer
- > Breakthrough after 10 years in top biochar amended layer
- > No breakthrough in 50 years for top AC amended layer

Take home messages

Amendments provide an alternative for the sustainable reuse of dredged materials.

- The six different types of biochars provide similar absorption for PCBs.
- 5% biochar provides modest reductions for porewater concentrations.
- Much larger reductions in porewater were observed with 1% PAC.
- Simulations of engineered placement with a strategic layering of treated sediments show:
 - early breakthrough in 5% biochar treated bioactive layer
 - no breakthrough in 1% PAC treated bioactive layer
- Dredged materials with low TOC need low AC dose for porewater concentration reductions

Photo Source:2019 Dredged Material Management Program Annual Report

Thank you!

ughosh@umbc.edu syan@exponent.com

WUMB

Port Administration, Maryland Department of Transpo

Acknowledgements: Collaborators: Be

Betsy Henry, Walter Dinicola - Anchor QEA Dallas Nicole Henson – Maryland Environmental Service

ata Cradit: Philadalphia District LIS Army Carpo of Engineera